Maternal intermittent fasting in mice disrupts the intestinal barrier leading to metabolic disorder in adult offspring

  • Patterson, R. E. & Sears, D. D. Metabolic effects of intermittent fasting. Annu. Rev. Nutr. 37, 371–393 (2017).

    Article 
    CAS 

    Google Scholar 

  • Longo, V. D. & Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23, 1048–1059 (2016).

    Article 
    CAS 

    Google Scholar 

  • Hoddy, K. K., Marlatt, K. L., Cetinkaya, H. & Ravussin, E. Intermittent fasting and metabolic health: from religious fast to time-restricted feeding. Obes. (Silver Spring). 28, S29–S37 (2020).

    Article 

    Google Scholar 

  • Mitchell, S. J. et al. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab. 29, 221–228 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kim, K. H. et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res. 27, 1309–1326 (2017).

    Article 
    CAS 

    Google Scholar 

  • Joslin, P., Bell, R. K. & Swoap, S. J. Obese mice on a high-fat alternate-day fasting regimen lose weight and improve glucose tolerance. J. Anim. Physiol. Anim. Nutr. 101, 1036–1045 (2017).

    Article 
    CAS 

    Google Scholar 

  • Dominguez-Perles, R., Gil-Izquierdo, A., Ferreres, F. & Medina, S. Update on oxidative stress and inflammation in pregnant women, unborn children (nasciturus), and newborns—Nutritional and dietary effects. Free Radic. Biol. Med. 142, 38–51 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cetin, I., Mando, C. & Calabrese, S. Maternal predictors of intrauterine growth restriction. Curr. Opin. Clin. Nutr. Metab. Care. 16, 310–319 (2013).

    Article 
    CAS 

    Google Scholar 

  • Koletzko, B., Symonds, M. E. & Olsen, S. F. Programming research: where are we and where do we go from here? Am. J. Clin. Nutr. 94, 2036S–2043S (2011).

    Article 
    CAS 

    Google Scholar 

  • Kusin, J. A., Kardjati, S., Houtkooper, J. M. & Renqvist, U. H. Energy supplementation during pregnancy and postnatal growth. Lancet 340, 623–626 (1992).

    Article 
    CAS 

    Google Scholar 

  • Wang, C. et al. A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am. J. Obstet. Gynecol. 216, 340–351 (2017).

    Article 

    Google Scholar 

  • van Ewijk, R. Long-term health effects on the next generation of Ramadan fasting during pregnancy. J. Health Econ. 30, 1246–1260 (2011).

    Article 

    Google Scholar 

  • van Ewijk, R. J., Painter, R. C. & Roseboom, T. J. Associations of prenatal exposure to Ramadan with small stature and thinness in adulthood: results from a large Indonesian population-based study. Am. J. Epidemiol. 177, 729–736 (2013).

    Article 

    Google Scholar 

  • Zheng, J. et al. Maternal low-protein diet modulates glucose metabolism and hepatic microRNAs expression in the early life of offspring dagger. Nutrients. 9, 205 (2017).

  • Devaskar, S. U. & Chu, A. Intrauterine growth restriction: hungry for an answer. Physiol. (Bethesda). 31, 131–146 (2016).

    CAS 

    Google Scholar 

  • Forgie, A. J. et al. The impact of maternal and early life malnutrition on health: a diet-microbe perspective. Bmc Med. 18, 135 (2020).

    Article 

    Google Scholar 

  • Srugo, S. A., Bloise, E., Nguyen, T. & Connor, K. L. Impact of maternal malnutrition on gut barrier defense: implications for pregnancy health and fetal development. Nutrients. 11, 1375 (2019).

  • Indrio, F. et al. Epigenetic matters: the link between early nutrition, microbiome, and long-term health development. Front Pediatr. 5, 178 (2017).

    Article 

    Google Scholar 

  • Wang, J. et al. Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J. Nutr. 138, 60–66 (2008).

    Article 
    CAS 

    Google Scholar 

  • Meyer, A. M. & Caton, J. S. Role of the small intestine in developmental programming: impact of maternal nutrition on the dam and offspring. Adv. Nutr. 7, 169–178 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ganal-Vonarburg, S. C., Fuhrer, T. & Gomez, D. A. M. Maternal microbiota and antibodies as advocates of neonatal health. Gut Microbes 8, 479–485 (2017).

    Article 
    CAS 

    Google Scholar 

  • Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z. & Dominguez-Bello, M. G. The infant microbiome development: mom matters. Trends Mol. Med. 21, 109–117 (2015).

    Article 

    Google Scholar 

  • Chu, D. M. et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 8, 77 (2016).

    Article 

    Google Scholar 

  • Chu, D. M., Meyer, K. M., Prince, A. L. & Aagaard, K. M. Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function. Gut Microbes 7, 459–470 (2016).

    Article 
    CAS 

    Google Scholar 

  • Selma-Royo, M. et al. Maternal diet during pregnancy and intestinal markers are associated with early gut microbiota. Eur. J. Nutr. 60, 1429–1442 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ghosh, S., Whitley, C. S., Haribabu, B. & Jala, V. R. Regulation of intestinal barrier function by microbial metabolites. Cell Mol. Gastroenterol. Hepatol. 11, 1463–1482 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cristofori, F. et al. Anti-Inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front Immunol. 12, 578386 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lannon, S. et al. Parallel detection of lactobacillus and bacterial vaginosis-associated bacterial DNA in the chorioamnion and vagina of pregnant women at term. J. Matern Fetal Neonatal Med. 32, 2702–2710 (2019).

    Article 

    Google Scholar 

  • Pelzer, E., Gomez-Arango, L. F., Barrett, H. L. & Nitert, M. D. Review: Maternal health and the placental microbiome. Placenta 54, 30–37 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ma, J. et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889 (2014).

    Article 
    CAS 

    Google Scholar 

  • Segain, J. P. et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut 47, 397–403 (2000).

    Article 
    CAS 

    Google Scholar 

  • Pettker, C. M. et al. Value of placental microbial evaluation in diagnosing intra-amniotic infection. Obstet. Gynecol. 109, 739–749 (2007).

    Article 

    Google Scholar 

  • Jimenez, E. et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 51, 270–274 (2005).

    Article 
    CAS 

    Google Scholar 

  • DiGiulio, D. B. et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am. J. Reprod. Immunol. 64, 38–57 (2010).

    Google Scholar 

  • Collado, M. C., Rautava, S., Aakko, J., Isolauri, E. & Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6, 23129 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kennedy, K. M. et al. Fetal meconium does not have a detectable microbiota before birth. Nat. Microbiol. 6, 865–873 (2021).

    Article 
    CAS 

    Google Scholar 

  • Leiby, J. S. et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome 6, 196 (2018).

    Article 

    Google Scholar 

  • Rinninella, E. et al. Gut microbiota during dietary restrictions: new insights in non-communicable diseases. Microorganisms. 8, 1140 (2020).

  • Cignarella, F. et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 27, 1222–1235 (2018).

    Article 
    CAS 

    Google Scholar 

  • Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article 
    CAS 

    Google Scholar 

  • Lecomte, V. et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. Plos One 10, e126931 (2015).

    Article 

    Google Scholar 

  • Park, J. M., Shin, Y., Kim, S. H., Jin, M. & Choi, J. J. Dietary epigallocatechin-3-gallate alters the gut microbiota of obese diabetic db/db mice: lactobacillus is a putative target. J. Med. Food 23, 1033–1042 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tanida, M. et al. High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats. Obes. Res. Clin. Pract. 2, I–II (2008).

    Article 

    Google Scholar 

  • Mazloom, K., Siddiqi, I. & Covasa, M. Probiotics: How effective are they in the fight against obesity? Nutrients. 11, 258 (2019).

  • Kadooka, Y. et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 64, 636–643 (2010).

    Article 
    CAS 

    Google Scholar 

  • Salles, B., Cioffi, D. & Ferreira, S. Probiotics supplementation and insulin resistance: a systematic review. Diabetol. Metab. Syndr. 12, 98 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yin, Y. et al. Ghrelin ameliorates nonalcoholic steatohepatitis induced by chronic low-grade inflammation via blockade of Kupffer cell M1 polarization. J. Cell. Physiol. 236, 5121–5133 (2021).

    Article 
    CAS 

    Google Scholar