Patterson, R. E. & Sears, D. D. Metabolic effects of intermittent fasting. Annu. Rev. Nutr. 37, 371–393 (2017).
Google Scholar
Longo, V. D. & Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23, 1048–1059 (2016).
Google Scholar
Hoddy, K. K., Marlatt, K. L., Cetinkaya, H. & Ravussin, E. Intermittent fasting and metabolic health: from religious fast to time-restricted feeding. Obes. (Silver Spring). 28, S29–S37 (2020).
Google Scholar
Mitchell, S. J. et al. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab. 29, 221–228 (2019).
Google Scholar
Kim, K. H. et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res. 27, 1309–1326 (2017).
Google Scholar
Joslin, P., Bell, R. K. & Swoap, S. J. Obese mice on a high-fat alternate-day fasting regimen lose weight and improve glucose tolerance. J. Anim. Physiol. Anim. Nutr. 101, 1036–1045 (2017).
Google Scholar
Dominguez-Perles, R., Gil-Izquierdo, A., Ferreres, F. & Medina, S. Update on oxidative stress and inflammation in pregnant women, unborn children (nasciturus), and newborns—Nutritional and dietary effects. Free Radic. Biol. Med. 142, 38–51 (2019).
Google Scholar
Cetin, I., Mando, C. & Calabrese, S. Maternal predictors of intrauterine growth restriction. Curr. Opin. Clin. Nutr. Metab. Care. 16, 310–319 (2013).
Google Scholar
Koletzko, B., Symonds, M. E. & Olsen, S. F. Programming research: where are we and where do we go from here? Am. J. Clin. Nutr. 94, 2036S–2043S (2011).
Google Scholar
Kusin, J. A., Kardjati, S., Houtkooper, J. M. & Renqvist, U. H. Energy supplementation during pregnancy and postnatal growth. Lancet 340, 623–626 (1992).
Google Scholar
Wang, C. et al. A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am. J. Obstet. Gynecol. 216, 340–351 (2017).
Google Scholar
van Ewijk, R. Long-term health effects on the next generation of Ramadan fasting during pregnancy. J. Health Econ. 30, 1246–1260 (2011).
Google Scholar
van Ewijk, R. J., Painter, R. C. & Roseboom, T. J. Associations of prenatal exposure to Ramadan with small stature and thinness in adulthood: results from a large Indonesian population-based study. Am. J. Epidemiol. 177, 729–736 (2013).
Google Scholar
Zheng, J. et al. Maternal low-protein diet modulates glucose metabolism and hepatic microRNAs expression in the early life of offspring dagger. Nutrients. 9, 205 (2017).
Devaskar, S. U. & Chu, A. Intrauterine growth restriction: hungry for an answer. Physiol. (Bethesda). 31, 131–146 (2016).
Google Scholar
Forgie, A. J. et al. The impact of maternal and early life malnutrition on health: a diet-microbe perspective. Bmc Med. 18, 135 (2020).
Google Scholar
Srugo, S. A., Bloise, E., Nguyen, T. & Connor, K. L. Impact of maternal malnutrition on gut barrier defense: implications for pregnancy health and fetal development. Nutrients. 11, 1375 (2019).
Indrio, F. et al. Epigenetic matters: the link between early nutrition, microbiome, and long-term health development. Front Pediatr. 5, 178 (2017).
Google Scholar
Wang, J. et al. Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J. Nutr. 138, 60–66 (2008).
Google Scholar
Meyer, A. M. & Caton, J. S. Role of the small intestine in developmental programming: impact of maternal nutrition on the dam and offspring. Adv. Nutr. 7, 169–178 (2016).
Google Scholar
Ganal-Vonarburg, S. C., Fuhrer, T. & Gomez, D. A. M. Maternal microbiota and antibodies as advocates of neonatal health. Gut Microbes 8, 479–485 (2017).
Google Scholar
Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z. & Dominguez-Bello, M. G. The infant microbiome development: mom matters. Trends Mol. Med. 21, 109–117 (2015).
Google Scholar
Chu, D. M. et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 8, 77 (2016).
Google Scholar
Chu, D. M., Meyer, K. M., Prince, A. L. & Aagaard, K. M. Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function. Gut Microbes 7, 459–470 (2016).
Google Scholar
Selma-Royo, M. et al. Maternal diet during pregnancy and intestinal markers are associated with early gut microbiota. Eur. J. Nutr. 60, 1429–1442 (2021).
Google Scholar
Ghosh, S., Whitley, C. S., Haribabu, B. & Jala, V. R. Regulation of intestinal barrier function by microbial metabolites. Cell Mol. Gastroenterol. Hepatol. 11, 1463–1482 (2021).
Google Scholar
Cristofori, F. et al. Anti-Inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front Immunol. 12, 578386 (2021).
Google Scholar
Lannon, S. et al. Parallel detection of lactobacillus and bacterial vaginosis-associated bacterial DNA in the chorioamnion and vagina of pregnant women at term. J. Matern Fetal Neonatal Med. 32, 2702–2710 (2019).
Google Scholar
Pelzer, E., Gomez-Arango, L. F., Barrett, H. L. & Nitert, M. D. Review: Maternal health and the placental microbiome. Placenta 54, 30–37 (2017).
Google Scholar
Ma, J. et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889 (2014).
Google Scholar
Segain, J. P. et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut 47, 397–403 (2000).
Google Scholar
Pettker, C. M. et al. Value of placental microbial evaluation in diagnosing intra-amniotic infection. Obstet. Gynecol. 109, 739–749 (2007).
Google Scholar
Jimenez, E. et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 51, 270–274 (2005).
Google Scholar
DiGiulio, D. B. et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am. J. Reprod. Immunol. 64, 38–57 (2010).
Collado, M. C., Rautava, S., Aakko, J., Isolauri, E. & Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6, 23129 (2016).
Google Scholar
Kennedy, K. M. et al. Fetal meconium does not have a detectable microbiota before birth. Nat. Microbiol. 6, 865–873 (2021).
Google Scholar
Leiby, J. S. et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome 6, 196 (2018).
Google Scholar
Rinninella, E. et al. Gut microbiota during dietary restrictions: new insights in non-communicable diseases. Microorganisms. 8, 1140 (2020).
Cignarella, F. et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 27, 1222–1235 (2018).
Google Scholar
Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).
Google Scholar
Lecomte, V. et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. Plos One 10, e126931 (2015).
Google Scholar
Park, J. M., Shin, Y., Kim, S. H., Jin, M. & Choi, J. J. Dietary epigallocatechin-3-gallate alters the gut microbiota of obese diabetic db/db mice: lactobacillus is a putative target. J. Med. Food 23, 1033–1042 (2020).
Google Scholar
Tanida, M. et al. High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats. Obes. Res. Clin. Pract. 2, I–II (2008).
Google Scholar
Mazloom, K., Siddiqi, I. & Covasa, M. Probiotics: How effective are they in the fight against obesity? Nutrients. 11, 258 (2019).
Kadooka, Y. et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 64, 636–643 (2010).
Google Scholar
Salles, B., Cioffi, D. & Ferreira, S. Probiotics supplementation and insulin resistance: a systematic review. Diabetol. Metab. Syndr. 12, 98 (2020).
Google Scholar
Yin, Y. et al. Ghrelin ameliorates nonalcoholic steatohepatitis induced by chronic low-grade inflammation via blockade of Kupffer cell M1 polarization. J. Cell. Physiol. 236, 5121–5133 (2021).
Google Scholar