Executive function during exercise is diminished by prolonged cognitive effort in men

  • Meylan, C., Cronin, J., Oliver, J. & Hughes, M. Talent identification in soccer: The role of maturity status on physical, physiological and technical characteristics. Int. J. Sports Sci. Coa. 5, 571–592 (2010).

    Google Scholar 

  • Scharfen, H. E. & Memmert, D. Measurement of cognitive functions in experts and elite athletes: A meta-analytic review. Appl. Cognit. Psychol. 33, 843–860 (2019).

    Google Scholar 

  • Reilly, T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J. Sports Sci. 15, 257–263 (1997).

    Google Scholar 

  • Wang, C., Ding, M. & Kluger, B. M. Change in intraindividual variability over time as a key metric for defining performance-based cognitive fatigability. Brain Cognit. 85, 251–258 (2014).

    Google Scholar 

  • Guo, Z. et al. The impairing effects of mental fatigue on response inhibition: An ERP study. PLoS ONE 13, e0198206 (2018).

    Google Scholar 

  • Smith, M. R. et al. Mental fatigue impairs soccer-specific decision-making skill. J. Sports Sci. 34, 1297–1304 (2016).

    Google Scholar 

  • Gantois, P. et al. Effects of mental fatigue on passing decision-making performance in professional soccer athletes. Eur. J. Sport Sci. 20, 534–543 (2020).

    Google Scholar 

  • Habay, J. et al. Mental fatigue and sport-specific psychomotor performance: A systematic review. Sports Med. 51, 1527–1548 (2021).

    Google Scholar 

  • Funahashi, S. Neuronal mechanisms of executive control by the prefrontal cortex. Neurosci. Res. 39, 147–165 (2001).

    Google Scholar 

  • Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognit. Psychol. 41, 49–100 (2000).

    Google Scholar 

  • Chang, Y. K., Labban, J. D., Gapin, J. I. & Etnier, J. L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 1453, 87–101 (2012).

    Google Scholar 

  • Ogoh, S. et al. The effect of changes in cerebral blood flow on cognitive function during exercise. Physiol. Rep. 2, e12163 (2014).

    Google Scholar 

  • Tsukamoto, H. et al. Impact of exercise intensity and duration on postexercise executive function. Med. Sci. Sports Exerc. 49, 774–784 (2017).

    Google Scholar 

  • Tsukamoto, H. et al. Flavanol-rich cocoa consumption enhances exercise-induced executive function improvements in humans. Nutrition 46, 90–96 (2018).

    Google Scholar 

  • Pontifex, M. B. et al. A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychol. Sport Exerc. 40, 1–22 (2019).

    Google Scholar 

  • Ishihara, T., Drollette, E. S., Ludyga, S., Hillman, C. H. & Kamijo, K. The effects of acute aerobic exercise on executive function: A systematic review and meta-analysis of individual participant data. Neurosci. Biobehav. Rev. 128, 258–269 (2021).

    Google Scholar 

  • Schmit, C. & Brisswalter, J. Executive functioning during prolonged exercise: A fatigue-based neurocognitive perspective. Int. Rev. Sport Exerc. Psychol. 13, 21–39 (2020).

    Google Scholar 

  • Kennedy, D. O. & Scholey, A. B. A glucose-caffeine “energy drink” ameliorates subjective and performance deficits during prolonged cognitive demand. Appetite 42, 331–333 (2004).

    Google Scholar 

  • Pageaux, B. & Lepers, R. The effects of mental fatigue on sport-related performance. Prog. Brain Res. 240, 291–315 (2018).

    Google Scholar 

  • Kunrath, C. A., Nakamura, F. Y., Roca, A., Tessitore, A. & Teoldo Da Costa, I. How does mental fatigue affect soccer performance during small-sided games? A cognitive, tactical and physical approach. J. Sports Sci. 38, 1818–1828 (2020).

    Google Scholar 

  • Nybo, L. & Nielsen, B. Perceived exertion is associated with an altered brain activity during exercise with progressive hyperthermia. J. Appl. Physiol. 91, 2017–2023 (2001).

    Google Scholar 

  • Fontes, E. B. et al. Brain activity and perceived exertion during cycling exercise: An fMRI study. Br. J. Sports Med. 49, 556–560 (2015).

    Google Scholar 

  • Wagner, A. D., Maril, A., Bjork, R. A. & Schacter, D. L. Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex. Neuroimage 14, 1337–1347 (2001).

    Google Scholar 

  • Fontes, E. B. et al. Modulation of cortical and subcortical brain areas at low and high exercise intensities. Br. J. Sports Med. 54, 110–115 (2020).

    Google Scholar 

  • Vestberg, T., Gustafson, R., Maurex, L., Ingvar, M. & Petrovic, P. Executive functions predict the success of top-soccer players. PLoS ONE 7, e34731 (2012).

    ADS 

    Google Scholar 

  • Byun, K. et al. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: An fNIRS study. Neuroimage 98, 336–345 (2014).

    Google Scholar 

  • Tsukamoto, H. et al. Dynamic cerebral autoregulation is maintained during high-intensity interval exercise. Med. Sci. Sports Exerc. 51, 372–378 (2019).

    Google Scholar 

  • Tsukamoto, H. et al. Plasma brain-derived neurotrophic factor and dynamic cerebral autoregulation in acute response to glycemic control following breakfast in young men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 320, R69–R79 (2021).

    Google Scholar 

  • Cooper, S. B., Bandelow, S., Nute, M. L., Morris, J. G. & Nevill, M. E. Breakfast glycaemic index and cognitive function in adolescent school children. Br. J. Nutr. 107, 1823–1832 (2012).

    Google Scholar 

  • Tsukamoto, H. et al. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiol. Behav. 155, 224–230 (2016).

    Google Scholar 

  • Aaslid, R., Lindegaard, K. F., Sorteberg, W. & Nornes, H. Cerebral autoregulation dynamics in humans. Stroke 20, 45–52 (1989).

    Google Scholar 

  • Ogoh, S., Nakata, H., Miyamoto, T., Bailey, D. M. & Shibasaki, M. Dynamic cerebral autoregulation during cognitive task: Effect of hypoxia. J. Appl. Physiol. 124, 1413–1419 (2018).

    Google Scholar 

  • Buckner, R. L. Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron 44, 195–208 (2004).

    Google Scholar 

  • Colcombe, S. & Kramer, A. F. Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol. Sci. 14, 125–130 (2003).

    Google Scholar 

  • Herold, F., Hamacher, D., Schega, L. & Müller, N. G. Thinking while moving or moving while thinking—Concepts of motor-cognitive training for cognitive performance enhancement. Front. Aging Neurosci. 10, 228 (2018).

    Google Scholar 

  • Hewston, P. et al. Effects of dance on cognitive function in older adults: A systematic review and meta-analysis. Age Ageing. 50, 1084–1092 (2021).

    Google Scholar 

  • Merchant, R. A. et al. Motoric cognitive risk syndrome, physio-cognitive decline syndrome, cognitive frailty and reversibility with dual-task exercise. Exp. Gerontol. 150, 111362 (2021).

    Google Scholar 

  • Voss, M. W. et al. Acute exercise effects predict training change in cognition and connectivity. Med. Sci. Sports Exerc. 52, 131–140 (2020).

    Google Scholar 

  • Kamijo, K. & Abe, R. Aftereffects of cognitively demanding acute aerobic exercise on working memory. Med. Sci. Sports Exerc. 51, 153–159 (2019).

    Google Scholar 

  • Matsuo, E., Matsubara, S., Shiga, S. & Yamanaka, K. Relationships between psychophysiological responses to cycling exercise and post-exercise self-efficacy. Front. Psychol. 6, 1775 (2015).

    Google Scholar 

  • McAuley, E. & Blissmer, B. Self-efficacy determinants and consequences of physical activity. Exerc. Sport Sci. Rev. 28, 85–88 (2000).

    Google Scholar 

  • Alberti, G., Iaia, F. M., Arcelli, E., Cavaggioni, L. & Rampinini, E. Goal scoring patterns in major European soccer leagues. Sport Sci. Health 9, 151–153 (2013).

    Google Scholar 

  • Wiśnik, P., Chmura, J., Ziemba, A. W., Mikulski, T. & Nazar, K. The effect of branched chain amino acids on psychomotor performance during treadmill exercise of changing intensity simulating a soccer game. Appl. Physiol. Nutr. Metab. 36, 856–862 (2011).

    Google Scholar 

  • Wang, C. C., Chu, C. H., Chu, I. H., Chan, K. H. & Chang, Y. K. Executive function during acute exercise: The role of exercise intensity. J. Sport Exerc. Psychol. 35, 358–367 (2013).

    Google Scholar 

  • Marley, C. J. et al. Impaired cerebral blood flow regulation and cognition in male football players. Scand. J. Med. Sci. Sports. 31, 1908–1913 (2021).

    Google Scholar 

  • Owens, T. S. et al. Concussion history in rugby union players is associated with depressed cerebrovascular reactivity and cognition. Scand. J. Med. Sci. Sports. 31, 2291–2299 (2021).

    Google Scholar 

  • Owens, T. S. et al. Contact events in rugby union and the link to reduced cognition: Evidence for impaired redox-regulation of cerebrovascular function. Exp. Physiol. 106, 1971–1980 (2021).

    Google Scholar 

  • Hashimoto, T. et al. Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. FASEB J. 32, 1417–1427 (2018).

    Google Scholar 

  • Tsukamoto, H. et al. Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiol. Behav. 160, 26–34 (2016).

    Google Scholar 

  • Svebak, S. & Murgatroyd, S. Metamotivational dominance: A multi-method validation of reversal theory constructs. J. Pers. Soc Psychol. 48, 107–116 (1985).

    Google Scholar 

  • Borg, G. A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14, 377–381 (1982).

    Google Scholar 

  • Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

    Google Scholar 

  • MacLeod, C. M. Half a century of research on the Stroop effect: An integrative review. Psychol. Bull. 109, 163–203 (1991).

    Google Scholar 

  • Ikeda, Y., Hirata, S., Okuzumi, H. & Kokubun, M. Features of stroop and reverse-stroop interference: Analysis by response modality and evaluation. Percept. Mot. Skills. 110, 654–660 (2010).

    Google Scholar 

  • Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R. & Kievit, R. A. Raincloud plots: A multi-platform tool for robust data visualization. Wellcome Open Res. 4, 63 (2019).

    Google Scholar 

  • Cohen, J. A power primer. Psychol. Bull. 112, 155–159 (1992).

    Google Scholar 

  • Bakdash, J. Z. & Marusich, L. R. Repeated measures correlation. Front. psychol. 8, 456 (2017).

    Google Scholar